skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brunkow, Evan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Multiphoton emission of electrons has been observed from sharp tips of heavily p-doped GaAs caused by laser pulses with, nominally, 800-nm wavelength, 1-nJ/pulse energy, and 90-fs duration. The emission is mostly due to four-photon processes, with some contribution from three-photon absorption as well. When the electron emission current due to two pulses separated by delay 200 fs << τ << 1 ns is integrated over all electron energies, it is less than that observed for the sum of the emission from the two individual pulses. This subadditive behavior is consistent with a fast electron emission process, i.e., one in which the electron emission occurs over a time comparable to the laser pulse width. The subadditivity results from Pauli blocking of electron emission by the second pulse due to a population increase of the GaAs conduction band caused by the first pulse. Such subadditive photoemission is a sensitive probe of excited-carrier dynamics. We employ the use of an excited-level population model to characterize the photon absorption process and give us a clearer understanding of the electron dynamics in GaAs associated with multiphoton electron emission. Possible applications of this subadditivity effect to control photoemitted electron spin are discussed. 
    more » « less